SANOFI 57

Computational Systems Toxicology and in silico prediction of off-target activities. Case studies and discussion.

EUFEMED 2017, London, UK Friedemann Schmidt

Outline

- Computational Systems Toxicology: Between data mining and mathematical modelling
- Advancing Confidence in Compounds and Prediction Tools. Application Examples.

The main origin of toxicities

BIOLOGICS

Drug Off-Target Effects & Market Withdrawals

Safety Remains a Cause of Attrition

Project Termination, Sanofi 2000-2010

SANOFI 🌍

Computational Toxicology

- Drivers to improve current computational/systems toxicology capabilities
 - Low/no physical availability of substances
 - Cost of experiments
 - Speed / turnaround time
 - Reduction of (animal) experiments
 - Generating hypothesis for MoT \rightarrow design of in vitro and in vivo screening strategy

Systems Toxicology is leveraged by a broad range of computational approaches

Toxicity = f(chemical structure)

Toxicity = $c_1 * descriptor_1 + ... + c_k * descriptor_k + c_0$

Typical descriptors:

- lipophilicity, H-bonding capacity,
- static or dynamic polar surfaces (PSA)
- free energy of solvation
- properties from ab initio calculations
- CoMFA, CoMSIA fields

Goal: Correlate compound properties with interpretable molecular features (2D / 3D)

Technology: Molecular Descriptors for Chemical Structures

- Descriptors are provided by chemometrics software, such as DRAGON, MOE, PipelinePilot, MoKa, …
- Global descriptors
 - Atom & bond counts, indices
 - 1D descriptors
 - Molecular weight, physico-chemical properties
 - Diameter, dipole moment, pka, charge
- 2D descriptors
 - Fragments, pharmacophoric indices, topology

3D descriptors

- volume, partial surface area,
- pharmacophoric features

Example 1: Computational Phototoxicity Evaluation

Liability assessment, calculation of probability of photosensitation

- Recursive partitioning classifier
 - Integrated UV absorption permeability, phototoxic fragments
 - Predicted property is the probability of positive in vitro test
 - Good statistical model parameters ROC_{test} > 0.8

Adverse Polypharmacology:

Toxic effects are often driven by off-target interaction

- The majority of adverse drug reactions are time and dose-dependent**
- Adverse reactions often depend on the pharmacology profile of the candidate molecule

*Mestres et al., DDT 14 (9), 479-485. **Bowes et al., NRDD 11, 909-922, 2012.

Predicting Adverse Polypharmacology

Experimental information

- Large target activity databases are available with millions of data points
- Screening collections with well annotated biological data are included in phenotypic screening sets (Deorphaning set)

CTlink (Chemotargets)

- Similarity and QSAR-based
- Multiple descriptors: PHRAG, FPD, SHED.
- Five statistical approaches for activity prediction.

Today 5818 target models from public data, 1811 Sanofi-models

Off-target QSAR models (predictProfile)

- Models are generated for off-target panels automatically
- Applicability domain defined by similarity to training set.
- Predictive models for 400 targets SAR sets.
- Reflecting Sanofi off-target profiling

D. Vidal, J. Mestres, Mol. Inf. 2010, 29, 543–551.

SANOFI J http://www.chemotargets.com/

Example 2: Which molecular initiating events are causal for severe cardiotoxic effects of an antifungal lead compound?

Example 2: Two distinct interactions putatively responsible

- AchE: Airway obstruction, behavioural effects
- CHRM1: ventricular tachycardia, constriction of bronchia

Network representation: Compound interactions with muscarinic CHRM1 and acetylcholinesterase AchE are considered causal for the observed effects.

Network enhancements using biomedical knowledge to model developmental toxicity

Example 3: Off-target assessment for cardiosafety

Multiscale Modelling suggests non-prohibitive APD shortening.

Simulation

Rabbit purkinje fiber

- Concentration-dependent decrease in action potential duration from 3 µmol/L
- Putatively consistent with an effect on Na+ and/or Ca++channels.
- Not suggestive of a proarrhythmic profile

SANOFI 🎝

General Workflow

SANOFI 🍞

Example 4: Comparative Genotoxicity assessment for Kinase Inhibitors

- Focal-adhesion Kinase FAK, Tie2 receptor tyrosine kinase and Kinase insert domain Receptor KDR are tyrosine kinases with implication in cellular proliferation and a decisive role in angiogenesis
- Protein kinases often share a significant similarity of the binding pocket, thus Polypharmacology is often observed, and selectivity is difficult to achieve

Example 4: Comparative Genotoxicity assessment for Kinase Inhibitors

- Assumption: Side effects are driven by specific compound features
- Model-assisted assessment of Kinase selectivity:

Example 5: AE prediction of a FAAH Inhibitor

• Fatty-acid-amide-hydrolase (FAAH serine hydrolase) inhibitor

- FAAH is mediator in the endocannabinoid system
- Potentially (partially?) irreversible mode of action
- Low potency in rodents: (IC₅₀^{rat}=1.1 μM)
- Significant metabolism
 - Unknown level of metabolite
- No apparent reactivity
- Compound specificity
 - Selectivity of compound and metabolites
 - Serine hydrolases: monoacylglycerol lipase (MAGL), a carboxyl esterase and acetylcholinesterase (10 fold selectivity for FAAH rat, 50 fold for FAAH human).

BIA-102474

- 100 fold against dopamine-beta-hydroxylase, glutamic acid decarboxylase, the monoamine oxidases A and B and choline acetyl transferase.
- Other inhibitors have higher selectivity margins (e.g. PF 04457845 Pfizer)
 - Disproportionate PK may lead to tissue exposure exceeding the margin

M1

M2

Supporting Risk Assessment by Off-target Prediction

- CTlink off-target assessment may be used to suggest potentially unexplored interactions of the substance and/or metabolites with endocannabinoid system
 - Refine in vitro safety screening strategy to include predicted targets (starting with predictions having a high confidence factor)

SANOFI 🌍

Supporting Risk Assessment by Off-target Prediction

- CNS predicted as potential target organ
- Support for hypothesis generation, e.g. interactions with the endocannabinoid system could contribute to adverse effects at high tissue exposure.

<i>⊊}+€7+€</i> +€ BIA.10-2474.new		Bra	in injuries
Neighbours sharing h	azards		
Distinctive hazards			
Targets			
Number of targets	Contribution	Maximum EF	Average EF
1	63.48%	1.95	1.95
Translocator prote	in		P30536 🛃
Pathways			
Fragments			

			NeuroTox 12							
	Identifier	Main term	Category 1 A	I	M	Confidence 2 v	pAct			
r	M2	Cns disorder	NeuroTox	Ρ		0.55	6.0			
3	BIA.10-2474	Headache	NeuroTox	Ρ		0.53	6.0			
3	BIA.10-2474	Nervous system disorder	NeuroTox	Ρ		0.53	6.0			
3	M2	Nervous system disorder	NeuroTox	Ρ		0.52	6.0			
3	M2	Headache	NeuroTox	Ρ		0.51	6.0			
3	BIA.10-2474	Spinal diseases	NeuroTox	Ρ		0.48	6.0			
r	BIA.10-2474	Brain injuries	NeuroTox	Ρ		0.34	6.0			
3	M2	Neuropathy	NeuroTox	Ρ		0.33	6.0			
3	BIA.10-2474	Encephalopathies	NeuroTox	Ρ		0.32	6.0			
3	M1	Cns disorder	NeuroTox	Ρ		0.30	7 .0			
3	BIA.10-2474	Cns disorder	NeuroTox	Ρ		0.30	7 .0			

SUMMARY S-links 69 0 Known Predicted 69 7.0 Max affinity 6.0 Min affinity Max confidence 0.55 Min confidence 0.30 By safety category 3 CardioTox EndocrinoTox 1 EyeTox 2

Example 6: FFAR1 Agonist Fasiglifam

- Potent orally available, selective partial agonist of human FFAR1
 - Advanced for type 2 diabetes before stopped in Phase III clinical development
 - Once daily oral administration to type 2 diabetic patients for 24 weeks was well tolerated and led to reduced HbA1c levels and reduction of fasting plasma glucose.
 - A slightly higher incidence of 3-fold elevated alanine transaminase (ALT) in the fasiglifam compared to placebo groups was observed. Although a majority of patients with elevation of aminotransferases had confounding factors, in some cases, drug-induced liver injury couldn't be excluded completely leading to a termination.

Slink Systems Toxicology Analysis

Identifier			Mainte	rm		Alert type			Co	Х	(
00000001		Precli	nical hepatot	oxicity findings		Preclinical			0.53			6	
☆ 00000001	00000001 Mitotoxicity		•	Preclinical			0.62	#1	1				
pACT(P)	Effe	ct	Methods	Confidence score 1	•	Target name							
7 .4	AGO[K]		000001	0.85	Free fatty acid receptor 1			ig mis.					
6.4	Peroxisome proliferator-activated rece		d recept	tor alpl	na	201							
<mark>=</mark> 5.9			001100	0.77	Per	oxisome proliferator-activated	ome proliferator-activated receptor delta		a				
A				0.38	Bile	acid receptor						- Developing the sect	
<mark>=</mark> A				0.37	Prostacyclin receptor			0000001		Preclinical hepat			
A 🗧				0.37	Lys	ophosphatidic acid receptor 3	3						
<mark>=</mark> A				0.37	Cys	teinyl leukotriene receptor 1				Drug neighbours			
A				0.37	Leu	kotriene B4 receptor 2				Number of neighbours		Contribution	
A				0.34	Gly	cogen [starch] synthase, muse	cle			9		76.77%	
Liver predicted as target organ						Drug name		Neighbouring criteria					
Matak		0.04	huova	mradiata	d.					furosemide	Ľ	Similar hazards (3)	
	DOIIC Detivo	pat	nways		a:					chlorpromazine	Ľ	Similar hazards (3)	
Gluci	ironia	tatio	n							fenofibrate		Similar hazards (3)	
Hydroxylation Dehydrogenation							Levothyroxine		Similar hazards (3)				
 Sulfatation 							HT0943		Similar hazards (3)				
			_							HT0273	Ľ	Similar hazards (3)	
Putative interactions							montelukast	Ľ	Similar hazards (3)				
• FFAR	k1, Pl	PAR	a/d,, bile	e acid recep	tor	BSEP				telmisartan		Similar hazards (3)	

Metabolic Pathways

Abundant pathways in hepatocytes of human, dog and rat

Formation of TAK875-GlcA:

HEP: 13% HEP: 2-4% HEP: <LOD

• In vitro metabolism of human dog and rat

Human

Dog

Rat

- low (< 20%) in hepatocytes of all species,
- low (< 20%) in liver microsomes with NADPH in all species,
- moderate (38-62%) in human and dog liver microsomes with UDPGA
- O-Acyl-glucuronide in hepatocytes is disproportionate in human
- The rate of disappearance (t_{1/2}) of the 1-O-acyl-glucuronide of was 2.6 h, clearly below the reference compound furosemide-O-acyl-glucuronide with 3.8 h, indicating a potential risk of reactivity.

In vitro Assessment

Cytotoxicity in primary human hepatocytes /GSH depleted hepatocytes

- No biologically significant difference in the cytotoxicity
- No alteration of the total GSH decrease in total GSH content at non-toxic concentration

Mitochondrial Toxicity

 Effects on human mitochondria and cellular metabolism do not appear to be the primary mechanism of cytotoxicity following 4hr exposure of human hepatocytes.

Transporter engagement

	Fasiglifam	Fasiglifam-Glca
Passive permeability	high	Very low
Uptake	Passive	active
OATP1B1	inhibitor	Inhibitor/substrate
OATP1B3	inhibitor	inhibitor
MRP2	-	Inhibitor/substrate
BSEP	inhibitor	-

Reactive Metabolites

- No significant covalent binding in liver microsomes of all species.
- In human hepatocytes a slight increase of covalent binding compared to the animal species.
- The slight potential of covalent binding confirmed in liver microsomes of human and dog after addition of UDPGA in 6h
- O-acyl-glucuronide metabolites solely suspected for covalent binding potential, as their abundancies were far below 5% in animal hepatocytes and the other human metabolites were observed at least in one *in-vitro* animal species with similar or higher abundances, as seen in human hepatocytes

Mean drug related material recovered in pellet ¹ , given in [pmol eq./mg protein]												
Cofactors/ Species	-NADPH	+NADPH	+NADPH +GSH	-NADPH +UDPGA	+NADPH +UDPGA	-NADPH	+NADPH	-NADPH +UDPGA	+NADPH +UDPGA	HEPs	HEPs	HEPs
Incubation	1h	1h	1h	2h	2h	6h	6h	6h	6h	2h	4h	6h
Number of replicates	1	1	1	7	7	3	3	7	7	3	3	5
Rat M	0	0	0	nd ²	nd	nd	nd	nd	nd	nd	2	nd
Dog M	12	13	2	14	12	8	9	23	21	5	8	10
Human M/F	5	1	0	12	15	11	15	27	26	46	99	84

1: after repeated wash steps with methanol/sulphuric acid solution and solubilizing with Solvable[™], corrected with 0h results

2: nd: not determined

HEPs: hepatocytes; M: Male; F: Female; M/F: Pool of male and female subject

Summary

- Computational systems toxicology
 - Tailored databases, prescriptive and predictive methods to improve compound safety
- Computational profiling complements and supports in vitro/in vivo screening strategy
 - QSPR/QSAR is an extensible technology for various predictive models
 - Cost-effective tools to select compounds and plan experiments early
 - Better planning and more focused design of mechanistic studies (in vitro/in vivo) to explore MoT
 - Risk mitigation
- Regulatory acceptance is increasing
 - e.g. ICH M7: no further investigations if in silico models + expert knowledge conclude negative result

Toxicological in-silico analyses aim for a significant reduction in potential risks resulting from unforeseen drug adverse events in all phases of drug discovery and development

Acknowledgement

- Andreas Czich
- Richard Brennan
- Philippe Detilleux
- Douglas Keller
- Katharina Mertsch
- Jacques Richard
- Veronique Thybaud
- Alexander Amberg
- Lennart Anger
- Manuela Stolte
- Denis Muliner
- Jan Wenzel
- Th. Kissner
- Peter Block
- Axel Dietrich
- Clemens Giegerich
- Nis Halland
- Uwe Heinelt
- Gerhard Hessler

- S. Güssregen
- Hans Matter
- David Machnik
- Patrick Mougenot
 - Roy Vaz

- Andrea Cavalli
- Valentina Piretti

- Jordi Mestres
- Ricard Garcia
- Nikita Remez
- David Vidal

SANOFI 🎝

